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1. Introduction 
 

In the theoretical investigation of the dynamics of 

nonlinear waves in physical systems several kinds of 

nonlinear partial differential equations (NLPDEs) has made 

significant progress in the past decades. There has been a 

growing interest in finding exact analytical solutions to 

nonlinear wave equations by using appropriate techniques. 

Particularly, the existence of soliton solutions for nonlinear 

partial differential equations are of great importance 

because of their potential application in many areas such as 

chaos, mathematical biology, diffusion process, quantum 

mechanics, optical fibers, neural physics, chemical physics, 

solid state physics, plasma physics and so on. It should be 

noted that the propagation behavior of nonlinear waves 

depends on the model coefficients which can be constant or 

variable parameters depending on the physical situation.  

There are various methods of integration of which used 

to carry out the integration of NLPDEs. Namely, 

F-expansion method [1,2], homotopy perturbation method 

[3,4], tanh-sech method [5-7], extended tanh method [8,9], 

 G
G



-expansion method [10,11], sine-cosine method 

[12,13], exp-function method [14,15], homogeneous 

balance method [16,17], Jacobi elliptic function method 

[18], trial equation method [19,20], first integral method 

[21,22], others.  

Optical solitons are wave packets or pulses which 

propagate in nonlinear dispersive media. Due to dynamical 

balance between the nonlinear and dispersive effects these 

waves retain a stable waveform. A soliton is a very special 

type of solitary wave, which also keeps its waveform after 

collision with other solitons [23]. Solitons in photonic 

crystal fibers as well as diffraction Bragg gratings have 

been studied. In addition, theories of dispersion managed 

solitons,quasi-linear pulses have also been developed. Dark 

solitons are also known as topological optical solitons in the 

context of nonlinear optics media. Dark optical solitons are 

more stable in presence of noise and spreads more slowly in 

presence of loss, in the optical communication systems, 

which compared with bright solitons in [24-27].  

The integrability properties such as bilinear form and 

soliton solution of the coupled, two, three and N-coupled 

Klein–Gordon equations have been constructed by 

Alagesan in [28]. In this paper, one such modern method of 

integrability will be applied to carry out the integration of 

coupled nonlinear Klein-Gordon equations. The technique 

that will be adopted to integrate such equations is the 

solitary wave ansatz method.  

The paper is organized as follows: In section 2, we 

derived the bright and dark optical soliton solutions of 

coupled nonlinear Klein-Gordon equations. In section 3, we 

apply the ansatz method to the two coupled nonlinear 

Klein-Gordon equations. In section 4, we apply the ansatz 

method to the three coupled nonlinear Klein-Gordon 

equations and establish many soliton solutions. In the last 

section, we briefly make a summary to the results obtained 

in the former sections.  

 

2. Coupled nonlinear Klein-Gordon equations 

 
Nonlinear Klein–Gordon equations couple with a 

scaler field v  is of the form  

 
32 2 0xx ttu u u u uv                    (1) 

4 0,x t tv v uu                    (2) 

introduced in [29]. 
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The solitary wave ansatz method proposed by Biswas 

[30] and Triki et al. [31] is particularly notable in its power 

and applicability in solving nonlinear problems, and it has 

been successfully applied to many kinds of nonlinear partial 

differential equations [32-35].  

 

 
2.1 Bright optical soliton solution 

 

To find exact bright optical soliton solution of 

equations (1)-(2), we introduce the following solitary wave 

ansatz 

1( ) pu x t A sech                  (3) 

2( ) rv x t A sech                  (4) 

and 

 x vt                     (5) 

where 1A , 2A     and v  are constant coefficients. Here 

1A  and 2A  are the soliton amplitude,   is the inverse 

width of the soliton and v  is the soliton velocity. The 

exponents p  and r  are unknown at this point and will 

be determined later. From the ansatz Eqs. (3)-(5) we get, 

 
2 2 2 2

1 1( 1)p p
xxu p A p p Asech sech        (6) 

 
2 2 2 2 2 2

1 1( 1)p p
ttu p v A p p v Asech sech       (7) 

 
3 3 3

1
pu A sech                   (8) 

 

2 tanhr
xv A r sech                (9) 

 

2 tanhr
tv A rv sech             (10) 

 
2 2
1 tanh .p

tuu A pv sech           (11) 

 
Substituting (6)-(11) into (1)-(2) yields 

 
2 2 2 2

1 1( 1)p pp A p p Asech sech      
2 2 2 2 2 2

1 1( 1)p pp v A p p v Asech sech       (12) 

3 3
1 1 1 22 2p p p rA A A Asech sech sech     0   

 

and 

 

2 2tanh tanhr rA r A rvsech sech          (13) 

2 2
14 tanhpA pv sech    0   

Equating the exponents of 
3 p

sech   and
2p

sech   

term in equation (12), we have 

 

3 2p p                       (14) 

and consequently 

1p                          (15) 

 

Again from (13) equating the exponents of 
2 tanhp

sech    and tanhr
sech    gives 

 

2p r                        (16) 

which leads to 

2r                          (17) 

 

With (15) setting the coefficients of 
p

sech  to zero 

in Eq. (12), 

 
2 2 2 2 2

1 1 1 0p A p v A A             (18) 

 
using Eqs. (15) and (17), we have 

 

2 1
0v







               (19) 

 
Again from Eq. (13), setting the coefficients of 

2 tanhp
sech    and tanhr

sech   terms to zero one 

obtains: 
2

1 2 14 0Ar A rv A pv              (20) 

 
and using Eqs. (15), (17) and (19): 

 

2 2

2

1
2

2 1 1

2 1

A

A

  



 
 
 
 

   

 


       (21) 

 

From Eq. (21), it is possible to see that the solitons will 

exist provided 

 

2

21 and 1 0A  
 
 
 
 

           (22) 

 

Setting the coefficients of 
2p

sech  , 
3 p

sech   and 

p r
sech  zero in Eq. (12) gives 

 
2 2 2 3

1 1 1 1 2( 1) ( 1) 2 2 0p p A p p v A A A A          (23) 

 
which leads to  

 

2

2
2

2 1
,

1
A



 




 
                (24) 

 

by using Eqs. (15), (17), (19) and (21). 

Finally, the bright optical soliton solution for the 



334                                                        O. Guner, A. Bekir 

 

Coupled Klein-Gordon Equation (1)-(2) is 

 

1( )u x t A sech                  (25) 

and 

                   
2

2( )v x t A sech     (26) 

 
where the velocity of the solitons v  is given by (19) and 

the soliton amplitude 
1A  and 

2A  are given by (21) and 

(24). When we write (24) in (21), we see from (19), (21) 

and (24) that the velocity of the solitons v  and the soliton 

amplitude 1A  and 2A  are depend on the inverse width of 

the soliton    

 

 
2.2 Dark optical soliton solution 

 

In this subsection, we are interested in finding the dark 

optical soliton solution (expressed as hyperbolic tangent 

function), as defined in [36,37], for the considered coupled 

nonlinear Klein-Gordon equations (1)-(2). In order to 

construct optical soliton solution, we use an ansatz solution 

of the form  

 

1( ) tanh pu x t A                   (27) 

2( ) tanhrv x t A                   (28) 

where 

 x vt                      (29) 

 

Here in (31)-(34), 1A , 2A  and   are the free parameters 

of the solitons and v  is the velocity of the soliton. The 

exponents p  and r  are unknown at this point and their 

values will fall out in the process of deriving the solution of 

this equation. From (27)-(29) we have 

 

 
2 2 2 2

1 ( 1) tanh 2 tanh ( 1) tanhp p p

ttu pv A { p p p }         

 (30) 

 

 

 2 2 2

1 ( 1) tanh 2 tanh ( 1) tanhp p p

xxu pA p p p         

 (31) 

 
3 3 3

1 tanh pu A                 (32) 

 

 1 1

2 tanh tanhr r

xv rA            (33) 

 1 1

2 tanh tanhr r

tv rvA              (34) 

 

 2 2 1 2 1

1 tanh tanhp p

tuu pvA            (35) 

 

By substituting (30)-(35) into (1)-(2) respectively, we 

have 

 
2 2 2 2

1 ( 1) tanh 2 tanh ( 1) tanhp p ppv A { p p p }       

 2 2 2

1 ( 1) tanh 2 tanh ( 1) tanhp p ppA p p p           

3 3

1 1 1 2tanh 2 tanh 2 tanhp p p rA A A A    

0                                                  (36)  

 

and 

 

    1 1 1 1

2 2tanh tanh tanh tanhr r r rrA rvA            

 2 2 1 2 1

14 tanh tanhp ppvA      0   (37) 

  

From Eq. (36), equating the exponents of 
3tanh p  

and 
2tanh p 

 we have 

 

3 2p p                     (38) 

and consequently 

1p                         (39) 

 

Again from Eq. (37) equating the exponents of 
2 1tanh p

 and
1tanhr 

 gives 

 

2 1 1p r                       (40) 

 
which leads to 

 

2r                          (41) 

 
with Eq. (39). 

 

From Eq. (37), vanishing the coefficients of the 

linearly independent functions 
2tanh p j 

 and 

tanh p j 
 (with 1p   and 2r  ), where 1 1j     

we have 
2

2 2 12 2 4 0A vA vA              (42) 

 
which gives rise to 

 
2

1
2

2

1

A v
A

v
  


                 (43) 

 
Again from Eq. (36), vanishing the coefficients of 

tanh p  one obtains: 

 

            
2 2 2 2 2

1 1 12 2 0p v A p A A       (44) 

 
which gives rise to  
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2

1
,

2 2v
  


 (45) 

 

by using Eqs. (39), (41) and (43). 

 
From Eq. (45), it is possible to see that the solitons 

exist provided 

 

                       [ 1,1]v R     (46) 

 

From Eq. (36), vanishing the coefficients of 
3tanh p

2tanh p 
 and tanh p r 

 one obtains 

 
2 2 2 3

1 1 1 1 2( 1) ( 1) 2 2 0p p v A p p A A A A         (47) 

 

so that (with 1p   and 2r  ) using Eqs. (43), (45), we 

have 

 

               1

1
1

2 2

v
A v

v


   


 (48) 

 

Substituting Eq. (48) into Eq. (43) we obtain 

 

                 
2 1

1

v
A v

v
    


 (49) 

 
Finally, the dark soliton solution for Coupled 

Klein-Gordon Equation (27)-(29) is given by 

 

                  1( ) tanhu x t A     (50) 

and 

                   
2

2( ) tanhv x t A     (51) 

 

where the free parameters 1A , 2A  and   are given in 

(45), (48) and (49). We see that the free parameters 1A , 

2A  and   are depend on the velocity of the soliton v   

 

Remark 1: The exact solutions of Eqs. (1)-(2) were 

found by using the general integral method, the tanh 

method, the infinite series method and the Reduced 

Differential Transform Method (RDTM) in [29,38-40] 

respectively. After, comparing our results with results in 

[39], we see that the results (25)-(26) are same. If proper   

value are chosen, then it can be seen that the results are 

same. But we can say that exact solutions of Eqs. (1)-(2) 

result’s (50)-(51), it can be seen that the results are new.  

 

 

 

3. Two-coupled nonlinear Klein-Gordon  
   equations 
 

Two-coupled nonlinear Klein–Gordon equations are 

defined as 

 

         2 2

1 1 1 1 2 12 0xx ttu u u u u v u        (52) 

 

          2 2

2 2 2 1 2 22 0xx ttu u u u u v u        (53) 

 

                  1 1 2 24 0,x t t tv v u u u u     (54) 

in [38]. 

 

3.1 Bright optical soliton solution 

 

To study the bright optical soliton solutions of 

two-coupled nonlinear Klein-Gordon equations, we assume 

the solitary wave ansatz of the form 

 

                  
1 1( ) pu x t A sech     (55) 

 

                   
2 2( ) ku x t A sech     (56) 

 

                     
3( ) rv x t A sech     (57) 

and 

                       x vt     (58) 

 

where 1A , 2A , 3A ,   and v  are constant coefficients. 

Here 1A , 2A  and 3A  are the solitons amplitude,   is 

the inverse width of the solitons and v  is the solitons 

velocity. The exponents p , k  and r  are unknown at 

this point and will be determined later. From the ansatz 

(55)-(58) we obtains: 

 

 
2 2 2 2

1 1 1( 1)p p
xxu p A p p Asech sech        (59) 

 
2 2 2 2 2 2

1 1 1( 1)p p
ttu p v A p p v Asech sech        (60) 

 

                      
3 3 3
1 1

pu A sech    (61) 

 

                  
2 2 2
2 1 1 2

k pu u A A sech    (62) 

 

                    
1 1 3

p rvu A A sech    (63) 

 

  
2 2 2 2

2 2 2( 1)k k
xxu k A k k Asech sech        (64) 

 
2 2 2 2 2 2

2 2 2( 1)k k
ttu k v A k k v Asech sech        (65) 
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3 3 3
2 2

ku A sech    (66) 

 

                 
2 2 2
1 2 1 2

p ku u A A sech    (67) 

 

                   
2 2 3

k rvu A A sech    (68) 

 

                 
3 tanhr

xv A r sech      (69) 

 

                  
3 tanhr

tv A rv sech     (70) 

 

               
2 2

1 1 1 tanhp
tu u A pv sech     (71) 

 

               
2 2

2 2 2 tanh .k
tu u A kv sech    (72) 

 
Substituting (59)-(72) into (52)-(54) yields 

 
2 2 2 2

1 1( 1)p pp A p p Asech sech      

2 2 2 2 2 2
1 1( 1)p pp v A p p v Asech sech       

3 23 2
1 1 1 22 2p p k pA A A Asech sech sech      (73) 

1 32 p rA A sech   0   

 
2 2 2 2

2 2( 1)k kk A k k Asech sech      

2 2 2 2 2 2
2 2( 1)k kk v A k k v Asech sech       

2 32 3
2 1 2 22 2k p k kA A A Asech sech sech      (74) 

2 32 k rA A sech  0   

 
and 

 

3 3tanh tanhr rA r A rvsech sech        

2 22 2
1 24 tanh 4 tanhp kA pv A kvsech sech        (75) 

                                     0   

 

Equating the exponents of 
3 p

sech   and
2p

sech   

terms in equation (73), one obtains 

 

                         3 2p p    (76) 

so that 

                            1p    (77) 

 

From Eq. (74) equating the exponents of 
3k

sech   

and
2k

sech  , 

 

                      3 2k k    (78) 

we get 

                      1k      (79) 

Also, equating the exponents of tanhr
sech   ,

2 tanhp
sech    and 

2 tanhk
sech    term in Eq. (75) 

gives rise to 

                      2 2p k r    (80) 

 
with Eqs. (77) and (79) that leads to 

 

                         2r    (81) 

 

Setting the coefficients of 
p

sech   zero in Eq. (73), 

we have 

 

            
2 2 2 2 2

1 1 1 0p A p v A A      (82) 

 
and using Eq. (77) that gives: 

 

                  

2 1
0.v







     (83) 

 
Again from Eq. (74), setting the coefficients of 

2k
sech  , 

2 p k
sech  , 

3k
sech   and 

k r
sech  terms 

zero one obtains: 

 

 2 2 2 2 3

2 2 1 2 2 2 3( 1) ( 1) 2 2 2 0k k A k k v A A A A A A         

 (84) 

the latter gives  

 

                 
2

1 2 31 ,A A A     (85) 

 

by using Eqs. (86) and (90). 

Finally, varying the coefficients of tanhr
sech   , 

2 tanhp
sech    and 

2 tanhk
sech   in Eq. (82) gives 

       
2 2

3 3 1 24 4 0A r A rv A pv A kv          (86) 

 
this leads to 

 

                   

2

3
2

2 1
,

1
A



 




 
 (87) 

 

by using Eqs. (77), (79), (81), (83) and (85). 

The bright optical soliton solution for the two-Coupled 

nonlinear Klein-Gordon equations (52)-(54) is 

 

                  1 1( )u x t A sech    (88) 

 

                  2 2( )u x t A sech    (89) 

and 

                  
2

3( )v x t A sech     (90) 
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where the velocity of the solitons v  is given by (83) and 

the soliton amplitudes 
1A  and 

3A  are given by (85) and 

(87).  

 

 
3.2 Dark optical soliton solution 

 

In order the start off with the solution hypothesis, the 

following ansatz is assumed 

 

                   
1 1( ) tanh pu x t A     (91) 

 

                  
2 2( ) tanhku x t A     (92) 

 

                  
3( ) tanhrv x t A     (93) 

and 

                       x vt     (94) 

 

Here in (91)-(94); 1A , 2A , 3A  and   are the free 

parameters of the solitons and v  is the velocity of the 

soliton. The exponents p , k  and r  are unknown. 

These will be determined. From (91)-(94), we obtain 

 

 2 2 2

1 1 ( 1) tanh 2 tanh ( 1) tanhp p p

xxu pA p p p         

 (95) 

 

 
2 2 2 2

1 1 ( 1) tanh 2 tanh ( 1) tanhp p p

ttu pv A { p p p }         

 (96) 

 

                      
3 3 3

1 1 tanh pu A    (97) 

 

                     
2 2 2

2 1 1 2 tanh k pu u A A    (98) 

 

                     
1 1 3 tanh p rvu A A    (99) 

 

 

 2 2 2

2 2 ( 1) tanh 2 tanh ( 1) tanhk k k

xxu kA k k k         

 (100) 

 

 
2 2 2 2

2 2 ( 1) tanh 2 tanh ( 1) tanhk k k

ttu kv A { k k k }         

 (101) 

 

                   
3 3 3

2 2 tanh ku A    (102) 

 

               
2 2 2

1 2 1 2 tanh p ku u A A    (103) 

 

                 2 2 3 tanhk rvu A A    (104) 

 

            1 1

3 tanh tanhr r

xv rA       (105) 

 

            1 1

3 tanh tanhr r

tv rvA       (106) 

 

        2 2 1 2 1

1 1 1 tanh tanhp p

tu u pvA        (107) 

 

       2 2 1 2 1

2 2 2 tanh tanhk k

tu u kvA        (108) 

 

Substituting (95)-(108) into (52)-(54) respectively 

yields 

 

 2 2 2

1 ( 1) tanh 2 tanh ( 1) tanhp p ppA p p p       

 

 
2 2 2 2

1 ( 1) tanh 2 tanh ( 1) tanhp p ppv A { p p p }        

 (109) 

 
3 3 2 2

1 1 1 2 1 3tanh 2 tanh 2 tanh 2 tanhp p k p p rA A A A A A       

 

 0   

 

  2 2 2

2 ( 1) tanh 2 tanh ( 1) tanhk k kkA k k k         

 
2 2 2 2

2 ( 1) tanh 2 tanh ( 1) tanhk k kkv A { k k k }        

 (110) 

 
2 2 3 3

2 1 2 2 2 3tanh 2 tanh 2 tanh 2 tanhk p k k k rA A A A A A       

 

 0   

and 

    1 1 1 1

3 3tanh tanh tanh tanhr r r rrA rvA            

 2 2 1 2 1

14 tanh tanhp ppvA       (111) 

 2 2 1 2 1

24 tanh tanhk kkvA      0   

 

From Eq. (109), equating the exponents of 
3tanh p  

and 
2tanh p 

 we have 

 

                       3 2p p    (112) 

so that 

                            1p    (113) 

 

From Eq. (110), equating the exponents of 
3tanh k   

and 
2tanhk 

 we get 

 

                     3 2k k    (114) 

we get 

                        1k    (115) 

Also from Eq. (111), equating the exponents of 
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2 1tanh k

,
2 1tanh p

 and
1tanhr 

 we have 

 

               2 1 2 1 1,p k r      (116) 

 
which leads to 

 

                           2,r   (117) 

 

by using Eqs. (113) and (115). 

 
Now from Eq. (109), setting the coefficients of 

tanh p  terms zero, one obtains 

 

          
2 2 2 2 2

1 1 12 2 0,p A p v A A      (118) 

 
that gives  

 

                    
2

1
,

2 2v
  


 (119) 

 

by using Eq. (113). 
 

From Eq. (119), it is possible to see that the solitons 

exist provided 

 

                       [ 1,1]v R     (120) 

 
Then, from Eq. (110), setting the coefficients of 

3tanh k  , 
2tanhk 

, 
2tanh p k 

 and tanhk r 
 

terms zero, we have 

 
2 2 2 2 3

2 2 1 2 2 2 3( 1) ( 1) 2 2 2 0k k A k k v A A A A A A        

 (121) 

so that (with 1k  )  

 

                  
2 2

3 1 2

1
,

2
A A A    (122) 

 

by using Eq. (119). 
 

From Eq. (111), variying the coefficients of the linearly 

independent functions 
2tanh p j 

 and tanhr j 
 or 

2tanh k j 
 and tanhr j 

 (with 1p  , 1k   and 

2r  ), where 1 1j     we have  

 

       
2 2

3 3 1 22 2 4 4 0A vA vA vA          (123) 

 

               

2

2
1

1 2 ( 1)

2 2

v A v
A

v

  
 


 (124) 

 

and so the solitons exist provided 
2

2(1 )( 1 2 ( 1)) 0v v A v     . 

 

Substituting Eq. (124) into Eq. (122) we obtain 

 

  

2
22

3 2

1 2 ( 1)1
1

2 2 2

v A v
A A v

v

  
     


 (125) 

 
Finally, the dark optical soliton solution for 

two-coupled nonlinear Klein-Gordon equations (55)-(58) is 

 

                  1 1( ) tanh ,u x t A    (126) 

 

                   2 2( ) tanh ,u x t A    (127) 

and 

                    
2

3( ) tanh ,v x t A    (128) 

 

where the free parameters 1A , 3A  and   are given in 

Eqs. (124), (122) or (125) and (119). We see that the free 

parameters 1A , 3A  and   are depend on the velocity of 

the soliton v  and the other free parameter 2A .  

 

Remark 2: Comparing our results with results in 

[29,38], we see that the results are new.  

 

 

4. Three-coupled nonlinear Klein-Gordon  
   equations 
 

The three-coupled Klein–Gordon equations are in the 

following general form: 

 

     2 2 2

1 1 1 1 2 3 12 0xx ttu u u u u u v u         (129) 

 

    2 2 2

2 2 2 1 2 3 22 0xx ttu u u u u u v u         (130) 

 

     2 2 2

3 3 3 1 2 3 32 0xx ttu u u u u u v u         (131) 

 

            1 1 2 2 3 34 0x t t t tv v u u u u u u       (132) 

 

 
4.1 Bright optical soliton solution 

 

Let us begin the analysis by assuming an ansatz 

solution of the form 

 

                  
1 1( ) pu x t A sech             (133) 

 

                 2 2( ) ku x t A sech     (134) 
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3 3( ) ru x t A sech     (135) 

 

                   
4( ) sv x t A sech    (136) 

and 

                     x vt     (137) 

where 
1A , 

2A , 
3A , 

4A ,   and v  are constant 

coefficients. Here 
1A , 

2A , 
3A  and 

4A  are the soliton 

amplitudes,   is the inverse width of the solitons and v  

is the solitons velocity The exponents p , k , r  and s  

are unknown at this point and will be determined later. 

From the ansatz (133)-(137) we obtain 

 
2 2 2 2

1 1 1( 1)p p
xxu p A p p Asech sech        (138) 

 
2 2 2 2 2 2

1 1 1( 1)p p
ttu p v A p p v Asech sech        (139) 

 

                     
3 3 3
1 1

pu A sech    (140) 

 

                     
2 2 2
2 1 1 2

k pu u A A sech    (141) 

 

                    
2 2 2
3 1 1 3

r pu u A A sech    (142) 

 

                     
1 1 4

p svu A A sech    (143) 

 
2 2 2 2

2 2 2( 1)k k
xxu k A k k Asech sech        (144) 

 
2 2 2 2 2 2

2 2 2( 1)k k
ttu k v A k k v Asech sech        (145) 

 

                     
3 3 3
2 2

ku A sech    (146) 

 

                 
2 2 2
1 2 1 2

p ku u A A sech    (147) 

 

                  
2 2 2

3 2 3 2

r ku u A A sech    (148) 

 

                  
2 2 4

k svu A A sech    (149) 

 
2 2 2 2

3 2 2( 1)r r
xxu r A r r Asech sech        (150) 

 
2 2 2 2 2 2

3 2 2( 1)r r
ttu r v A r r v Asech sech        (151) 

 

                     
3 3 3
3 3

ru A sech    (152) 

 

                   
2 2 2

1 3 1 3

p ru u A A sech    (153) 

 

                   
2 2 2
2 3 2 3

k ru u A A sech    (154) 

 

                    
3 3 4

r svu A A sech    (155) 

 

                
4 tanhs

xv A s sech      (156) 

             
4 tanhs

tv A sv sech     (157) 

 

             
2 2

1 1 1 tanhp
tu u A pv sech     (158) 

 

            
2 2

2 2 2 tanhk
tu u A kv sech     (159) 

 
2 2

3 3 3 tanh .r
tu u A rv sech          (160) 

 

Substituting (138)-(160) into (129)-(132), respectively  

yields 

 
2 2 2 2

1 1( 1)p pp A p p Asech sech      

2 2 2 2 2 2
1 1( 1)p pp v A p p v Asech sech       

3 23 2
1 1 1 22 2p p k pA A A Asech sech sech      (161) 

2 2
3 1 1 42 2r k p sA A A Asech sech    0   

 

 
2 2 2 2

2 2( 1)k kk A k k Asech sech      

2 2 2 2 2 2
2 2( 1)k kk v A k k v Asech sech       

2 32 3
2 1 2 22 2k p k kA A A Asech sech sech      (162) 

2 2
3 2 2 42 2r k k sA A A Asech sech    0   

 

 
2 2 2 2

2 2( 1)r rr A r r Asech sech      

2 2 2 2 2 2
2 2( 1)r rr v A r r v Asech sech       

2 22 2
3 1 3 2 32 2r p r k rA A A A Asech sech sech       (163) 

3 3
3 3 42 2r r sA A Asech sech   0   

 

and 

 

4 4tanh tanhs sA s A svsech sech        

2 22 2
1 24 tanh 4 tanhp kA pv A kvsech sech        (164) 

2 2
34 tanhrA rv sech    0   

 

Similarly, equating the exponents of 
3 p

sech   and

2p
sech   terms in Eq. (161), one obtains 

 

                    3 2p p    (165) 

so that 

                        1p    (166) 
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From Eq. (162) equating the exponents of 
3k

sech   

and
2k

sech   

                        3 2k k    (167) 

we get 

                           1k    (168) 

 

Also, from Eq. (163), equating the exponents of 
3r

sech   and
2r

sech   

 

                       3 2r r    (169) 

we get 

                          1r    (170) 

 

Then equating the exponents of tanhs
sech  ,

2 tanhp
sech   , 

2 tanhk
sech    and 

2 tanhr
sech    

term in Eq. (164) gives 

  

                    2 2 2p k r s     (171) 

 
and by using Eqs. (166) and (168) it leads to 

 

                         2s    (172) 

 

Setting the coefficients of 
p

sech   zero in Eq. (161), 

we have 

              
2 2 2 2 2

1 1 1 0p A p v A A      (173) 

 
and by using Eq. (166) that gives 

 

                  

2 1
0.v







     (174) 

 
On the otherhand, from Eq. (164) setting the 

coefficients of tanhs
sech  ,

2 tanhp
sech   , 

2 tanhk
sech    and 

2 tanhr
sech    terms zero we 

obtain 

 
2 2 2

4 4 1 2 34 4 4 0A s A sv A pv A kv A rv            (175) 

 
the latter gives by using Eq. (174): 

 

          

2 2 2 2

1 2 3

4
2

2 1

1

A A A
A



 

 
 
 

  
  

 
 (176) 

 

Setting the coefficients of 
3 p

sech  , 
p r

sech  , 

2k p
sech 

, 
2p

sech   and 
2r k

sech  in Eq. (161) zero 

gives rise to 

 

 2 2 2 3 2 2

1 1 1 1 2 3 1 1 4( 1) ( 1) 2 2 2 2 0p p A p p v A A A A A A A A            

 (177) 

 
and this leads to  

 

2 2 2 2 2 2 2 2

1 1 3 3

2
2

1 1 1 1

,
1

A A A A

A

       

 

   
   
   
   
         


 

 (178) 

 

by using Eqs. (166), (168), (170), (172), (174) and (176). 
 

Finally, the bright optical soliton solution for the 

three-coupled nonlinear Klein-Gordon equations 

(133)-(137) is as follows; 

 

                  1 1( )u x t A sech    (179) 

 

                  2 2( )u x t A sech    (180) 

 

                  3 3( )u x t A sech    (181) 

and 

                  
2

4( )v x t A sech     (182) 

 
where the velocity of the solitons v  is given by (174) and 

the soliton amplitudes 4A  and 2A  are given by (176) and 

(178).  

 

 
4.2 Dark optical soliton solution 

 

In this section, we concern with 1-soliton to the 

three-coupled nonlinear Klein-Gordon equations by the 

wave ansatz method. The starting hypothesis or ansatz is as 

follows; 

                 
1 1( ) tanh pu x t A     (183) 

 

                  
2 2( ) tanhku x t A     (184) 

 

                 
3 3( ) tanhru x t A     (185) 

 

                 
4( ) tanhsv x t A     (186) 

and 

                       ,x vt    (187) 

 

where 1A , 2A , 3A , 4A  and   are the free parameters 

of the solitons and v  is the velocity of the soliton. The 

exponents p , k , r  and s  are unknown. These will be 

determined later. From (183) - (187) we obtain 
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 2 2 2

1 1 ( 1) tanh 2 tanh ( 1) tanhp p p

xxu pA p p p         

 (188) 

 
2 2 2 2

1 1 ( 1) tanh 2 tanh ( 1) tanhp p p

ttu pv A { p p p }         

 (189) 

 

                     
3 3 3

1 1 tanh pu A    (190) 

 

                  
2 2 2

2 1 1 2 tanh k pu u A A    (191) 

 

                 
2 2 2

3 1 1 3 tanh r pu u A A    (192) 

 

                   
1 1 4 tanh p svu A A    (193) 

 

 

 2 2 2

2 2 ( 1) tanh 2 tanh ( 1) tanhk k k

xxu kA k k k         

 (194) 

 

 
2 2 2 2

2 2 ( 1) tanh 2 tanh ( 1) tanhk k k

ttu kv A { k k k }         

 (195) 

 

                     
3 3 3

2 2 tanh ku A    (196) 

 

                 
2 2 2

1 2 1 2 tanh p ku u A A    (197) 

 

                 
2 2 2

3 2 3 2 tanh r ku u A A    (198) 

 

                   
2 2 4 tanhk svu A A    (199) 

 

 

 2 2 2

3 3 ( 1) tanh 2 tanh ( 1) tanhr r r

xxu rA r r r         

 (200) 

 
2 2 2 2

3 3 ( 1) tanh 2 tanh ( 1) tanhr r r

ttu rv A { r r r }         

 (201) 

 

                      
3 3 3

3 3 tanh ru A    (202) 

 

                  
2 2 2

1 3 1 3 tanh p ru u A A    (203) 

 

                  
2 2 2

2 3 2 3 tanh k ru u A A    (204) 

 

                     
3 3 4 tanhr svu A A    (205) 

 

              1 1

3 tanh tanhs s

xv sA       (206) 

 

            1 1

3 tanh tanhs s

tv svA       (207) 

 

        2 2 1 2 1

1 1 1 tanh tanhp p

tu u pvA        (208) 

 

      2 2 1 2 1

2 2 2 tanh tanhk k

tu u kvA        (209) 

 

         2 2 1 2 1

3 3 3 tanh tanhr r

tu u rvA        (210) 

 
Substituting (188)-(210) into (129)-(132) respectively 

yields 

 

 2 2 2

1 ( 1) tanh 2 tanh ( 1) tanhp p ppA p p p       

2 2 2 2

1 ( 1) tanh 2 tanh ( 1) tanhp p ppv A { p p p }        
3 3 2 2 2 2

1 1 1 2 1 3 1 4tanh 2 tanh 2 tanh 2 tanh 2 tanhp p k p r p p sA A A A A A A A          

 0   

 (211) 

  

 2 2 2

2 ( 1) tanh 2 tanh ( 1) tanhk k kkA k k k         

 2 2 2 2

2 ( 1) tanh 2 tanh ( 1) tanhk k kkv A { k k k }          
2 2 3 3 2 2

2 1 2 2 3 2 2 4tanh 2 tanh 2 tanh 2 tanh 2 tanhk p k k r k k sA A A A A A A A          

 0   

 (212) 

  

   2 2 2

3 ( 1) t anh 2 tanh ( 1) tanhr r rrA r r r         

 2 2 2 2

3 ( 1) tanh 2 tanh ( 1) tanhr r rrv A { r r r }          
2 2 3 3 2 2

3 1 3 3 2 3 3 4tanh 2 tanh 2 tanh 2 tanh 2 tanhr p r r k r r sA A A A A A A A          

 0   

             (213) 

  

     1 1 1 1

3 3tanh tanh tanh tanhs s s ssA svA            

 2 2 1 2 1

14 tanh tanhp ppvA       (214) 

 2 2 1 2 1

24 tanh tanhk kkvA       

 2 2 1 2 1

34 tanh tanhr rrvA      0   

 

From Eq. (211) equating the exponents of 
3tanh p  

and 
2tanh p 

 we have 

 

3 2p p                   (215) 

so that 

                            1p    (216) 

 

Also, from Eq. (212) equating the exponents of 
3tanh k   and 

2tanhk 
 we have 

                      3 2k k    (217) 

we get 

  1k                          (218) 
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On the otherhand, from Eq. (213), equating the 

exponents of 
3tanh r   and 

2tanhr 
 we have 

 

                        3 2r r    (219) 

we get 

                           1r    (220) 

 

Then from Eq. (214) equating the exponents of 
2 1tanh k

,
2 1tanh p

, 
2 1tanh r

and
1tanhs 

 gives rise 

to 

 

              2 1 2 1 2 1 1p k r s         (221) 

 
and by using Eqs. (216), (218) and (220) we get 

 

                          2s    (222) 

 

Now from Eq. (213), setting the coefficients of 

tanh p  terms zero one obtains: 

 

          
2 2 2 2 2

3 3 32 2 0p A p v A A       (223) 

 
and by using Eq. (216), we get 

 

                  

24 2
0

2
v







      (224) 

 
After that, in Eq. (211), setting the coefficients of 

3tanh p , 
2tanh p 

, 
2tanh k p

, 
2tanh r p

 and 

tanh p r 
 terms zero one obtains 

 
2 2 2 3 2 2

1 1 1 1 2 1 3 1 4( 1) ( 1) 2 2 2 2 0p p A p p v A A A A A A A A         

 (225) 

so that (with 1p  ) and using Eq. (224) 

 

            

2 2

2 3 4

1

2 4 4 4

2

A A A
A

  
    (226) 

 
Again from Eq. (214), setting the coefficients of the 

linearly independent functions 
2tanh p j 

 and 

tanhs j 
 or 

2tanh k j 
 and tanhs j 

 
2tanh r j 

 

and tanhs j 
 (with 1p  , 1k   , 1r  and 2s  ) 

zero, 1 1j     we have 

 
2 2 2

3 3 1 2 32 2 4 4 4 0A vA vA vA vA            (227) 

 

and 

 

                

2

4
2

4 2

2 4 2
A



 


 
  

 (228) 

 
Finally, the dark optical soliton solution for 

three-coupled nonlinear Klein-Gordon equations 

(183)-(187) is of the form 

 

                   
1 1( ) tanhu x t A     (229) 

 

                    
2 2( ) tanhu x t A     (230) 

 

                    3 3( ) tanhu x t A     (231) 

and 

                    
2

4( ) tanhv x t A     (232) 

 

where the free parameters 1A  and 4A  are given by (226) 

and (228). The velocity of the soliton v  is given by (224).  

 

Remark 3: Comparing our results with results in 

[29,38], we see that our results are new.  

 

Remark 4: It has been shown that the one- and 

two-coupled nonlinear Klein–Gordon equations are 

completely integrable and their integrability properties can 

also be constructed by using P-analysis [41].  

 

 

5. Conclusion 
 

In this work, we have investigated the bright and dark 

optical soliton solutions of three variants of the coupled 

Klein-Gordon equations by using the solitary wave ansatz 

method. We showed that all the physical parameters of the 

obtained solutions are depend on the others. We also proved 

that the exponents in the bright solitary wave solution are 

similar to those given in the dark solitary wave solution. 

Some of the results are in agreement with the results 

reported by others in the literature, and new results are 

formally developed in this work. In addition to, with the aid 

of Maple, it is confirmed that the solutions are correct since 

these solutions satisfy the original equation.  

The method that is used is far less involved than the 

standard techniques that are used to study these kind of 

problems. Additionally, we see that the used method is an 

efficient method of integrability for constructing exact 

soliton solutions for such versions of the coupled nonlinear 

KG-type equations. 
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