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1. Introduction

In the theoretical investigation of the dynamics of
nonlinear waves in physical systems several kinds of
nonlinear partial differential equations (NLPDES) has made
significant progress in the past decades. There has been a
growing interest in finding exact analytical solutions to
nonlinear wave equations by using appropriate techniques.
Particularly, the existence of soliton solutions for nonlinear
partial differential equations are of great importance
because of their potential application in many areas such as
chaos, mathematical biology, diffusion process, quantum
mechanics, optical fibers, neural physics, chemical physics,
solid state physics, plasma physics and so on. It should be
noted that the propagation behavior of nonlinear waves
depends on the model coefficients which can be constant or
variable parameters depending on the physical situation.

There are various methods of integration of which used
to carry out the integration of NLPDEs. Namely,
F-expansion method [1,2], homotopy perturbation method
[3,4], tanh-sech method [5-7], extended tanh method [8,9],

G

(3) -expansion method [10,11], sine-cosine method

[12,13], exp-function method [14,15], homogeneous
balance method [16,17], Jacobi elliptic function method
[18], trial equation method [19,20], first integral method
[21,22], others.

Optical solitons are wave packets or pulses which
propagate in nonlinear dispersive media. Due to dynamical
balance between the nonlinear and dispersive effects these
waves retain a stable waveform. A soliton is a very special
type of solitary wave, which also keeps its waveform after
collision with other solitons [23]. Solitons in photonic
crystal fibers as well as diffraction Bragg gratings have

been studied. In addition, theories of dispersion managed
solitons,quasi-linear pulses have also been developed. Dark
solitons are also known as topological optical solitons in the
context of nonlinear optics media. Dark optical solitons are
more stable in presence of noise and spreads more slowly in
presence of loss, in the optical communication systems,
which compared with bright solitons in [24-27].

The integrability properties such as bilinear form and
soliton solution of the coupled, two, three and N-coupled
Klein—-Gordon equations have been constructed by
Alagesan in [28]. In this paper, one such modern method of
integrability will be applied to carry out the integration of
coupled nonlinear Klein-Gordon equations. The technique
that will be adopted to integrate such equations is the
solitary wave ansatz method.

The paper is organized as follows: In section 2, we
derived the bright and dark optical soliton solutions of
coupled nonlinear Klein-Gordon equations. In section 3, we
apply the ansatz method to the two coupled nonlinear
Klein-Gordon equations. In section 4, we apply the ansatz
method to the three coupled nonlinear Klein-Gordon
equations and establish many soliton solutions. In the last
section, we briefly make a summary to the results obtained
in the former sections.

2. Coupled nonlinear Klein-Gordon equations

Nonlinear Klein—-Gordon equations couple with a
scaler field V is of the form

U, —U, —u+2u®+2uv =0, 1)
v, —V, —4uu, =0, )
introduced in [29].



Optical solitons for nonlinear coupled Klein-Gordon equations 333

The solitary wave ansatz method proposed by Biswas
[30] and Triki et al. [31] is particularly notable in its power
and applicability in solving nonlinear problems, and it has
been successfully applied to many kinds of nonlinear partial
differential equations [32-35].

2.1 Bright optical soliton solution

To find exact bright optical soliton solution of
equations (1)-(2), we introduce the following solitary wave
ansatz

u(x,t) = Asech®r, 3)
V(x,t) = A sech'r, (4)

and
r=n(x-Vvt), 5)

where A, A,, n and V are constant coefficients. Here

A and A, are the soliton amplitude, 7 is the inverse
width of the soliton and V is the soliton velocity. The

exponents P and r are unknown at this point and will
be determined later. From the ansatz Egs. (3)-(5) we get,

u, = p’n°Asech’r — p(p+1)n°Asech”z, (6)

u, = p*7°v? A sech’r — p(p +)v?;° A sech %, (7)

u’ = A’sech®r, ®8)

v, =—Arnsech'z tanhr, 9)
v, = Arvpsech'ztanh 7, (10)
uu, = A>pvipsech?’r tanh 7. (11)

Substituting (6)-(11) into (1)-(2) yields
p?n?Asech’ — p(p+1)r°Asechr

—p’n*v?Asech®r + p(p+1)v’r° A sech”?r (12)
—Asech’r +2A’sech®r + 2A A sech”'r =0,

and

—Arnsech'rtanh 7 — A,rvipsech'ztanhz - (13)
—4A12 pvsech®’rtanhz =0.
Equating the exponents of sech®’z and sech™ %
term in equation (12), we have

3p=p+2, (14)

and consequently
p=1. (15)

Again from (13) equating the exponents of
sech’Prtanhz and sech'ztanhz gives

2p=r, (16)
which leads to
r=2. 17)

With (15) setting the coefficients of sechPr to zero
in Eq. (12),

P’ A-p VA=A =0, (18)
using Egs. (15) and (17), we have

n’ -1
n

v=1t

,n#0. (19)

Again from Eqg. (13), setting the coefficients of
sech’Prtanhz and sech'ztanhz terms to zero one
obtains:

—Arn—Avn—4A’pvn =0, (20)

and using Egs. (15), (17) and (19):

\/—ZAZ\/m{n+\/m]

A= = : (1)
24n° -1

From Eq. (21), it is possible to see that the solitons will
exist provided

n#+1 and Az[n+«/n2—1]<0. 22)

Setting the coefficients of sech®"*r, sech®’z and
sech®"'z zero in Eq. (12) gives

—p(p+D)r* A+ p(p+DV?r* A +2A  +2AA, =0, (23)

which leads to

2 —
A :2,%1_1,7 (24)

by using Egs. (15), (17), (19) and (21).
Finally, the bright optical soliton solution for the
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Coupled Klein-Gordon Equation (1)-(2) is

u(x,t) = Asechr, (25)
and

v(x,t) = A sech’, (26)
where the velocity of the solitons V is given by (19) and
the soliton amplitude A and A, are given by (21) and
(24). When we write (24) in (21), we see from (19), (21)
and (24) that the velocity of the solitons V and the soliton
amplitude A and A, are depend on the inverse width of

the soliton 7.

2.2 Dark optical soliton solution

In this subsection, we are interested in finding the dark
optical soliton solution (expressed as hyperbolic tangent
function), as defined in [36,37], for the considered coupled
nonlinear Klein-Gordon equations (1)-(2). In order to
construct optical soliton solution, we use an ansatz solution
of the form

u(x,t) = A tanh® z, (27)
v(x,t) = A tanh" z, (28)

where
rzry(x—vt). (29)

Here in (31)-(34), A, A, and 7 are the free parameters

of the solitons and V is the velocity of the soliton. The
exponents P and r are unknown at this point and their

values will fall out in the process of deriving the solution of
this equation. From (27)-(29) we have

u, = pv’An*{(p-Dtanh®?r—2ptanh® r +(p+1)tanh®? ¢},
(30)

u, = pA7° {(p—1)tanh”? z —2ptanh® 7+ (p+1) tanh** 7},

(31)

u® = A’tanh® 7, (32)

v, = rAzn{tanh“’1 r—tanh™ r}, (33)

v, = VA7 {tanh”l 7 —tanh"™* r}, (34)
uu, = pvA’p{tanh*** z —tanh*** | (35)

By substituting (30)-(35) into (1)-(2) respectively, we

have

pv?An*{(p-DtanhP?z—2ptanh® r+(p+1)tanh”? 7}
—pAR? {(p—l) tanh?? 7 —2ptanh® 7 +(p+1) tanh**? r}
—A tanh? 7+ 2A’ tanh®® 7+ 2A A, tanh ™" ¢

=0, (36)

and

rAn{tanh™ z —tanh™ z} — rvA; {tanh™ 7 — tanh ™ 7

~4pvAln {tanh®* 7 —tanh** 7} =0, (37)
From Eq. (36), equating the exponents of tanh®’ z
and tanh®*? 7 we have

3p=p+2, (38)

and consequently

p=1. (39)

Again from Eq. (37) equating the exponents of
tanh?”** and tanh"™ 7 gives

2p+1l=r+1 (40)

which leads to
(41)

with Eg. (39).

From Eqg. (37), vanishing the coefficients of the
linearly ~independent functions tanh?**' 7z  and
tanh?"/ 7 (with p=1 and r=2), where j=-11
we have

2An+2VvAn +4vA'n =0, (42)
which gives rise to
p = 2AY @3)
v+l

Again from Eg. (36), vanishing the coefficients of

tanh® 7 one obtains:
-2 pzva_Ln2 +2 pZA_Ln2 -A =0, (44)

which gives rise to
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1
=i—’
7 J2vi -2

by using Egs. (39), (41) and (43).

(45)

From Eq. (45), it is possible to see that the solitons
exist provided

ve R—[-11]. (46)

From Eq. (36), vanishing the coefficients of tanh®° ¢
tanh”*? 7 and tanh®" z one obtains

pP(P+)V? AR — p(p+1)An” +2A° +2AA, =0, (47)

so that (with p=1 and r =2) using Egs. (43), (45), we
have

v+1

A=

v=l. 48
2-2v (48)

Substituting Eq. (48) into Eq. (43) we obtain

Vv

, vzl 49
V1 (49)

A =+

Finally, the dark soliton solution for Coupled
Klein-Gordon Equation (27)-(29) is given by

u(x,t) = A tanhr, (50)
and
V(x,t) = A tanh® 7, (51)

where the free parameters A, A, and 7 are given in
(45), (48) and (49). We see that the free parameters A,
A, and 7 are depend on the velocity of the soliton V.

Remark 1: The exact solutions of Egs. (1)-(2) were
found by using the general integral method, the tanh
method, the infinite series method and the Reduced
Differential Transform Method (RDTM) in [29,38-40]
respectively. After, comparing our results with results in
[39], we see that the results (25)-(26) are same. If proper 77
value are chosen, then it can be seen that the results are

same. But we can say that exact solutions of Egs. (1)-(2)
result’s (50)-(51), it can be seen that the results are new.

3. Two-coupled nonlinear Klein-Gordon
equations

Two-coupled nonlinear Klein—Gordon equations are
defined as

U

XX

— Uy, —ul+2(uf +u22+v)ul =0, (52

Uy Uy — Uy +2(U7 +U3 +V)u, =0, (53)

2xx

V, =V, —4(uu, +U,U, ) =0,  (54)

X

in [38].
3.1 Bright optical soliton solution
To study the bright optical soliton solutions of

two-coupled nonlinear Klein-Gordon equations, we assume
the solitary wave ansatz of the form

u,(x,t) = Asech’r, (55)
u,(x,t) = A sech’r, (56)
V(x,t) = Ajsech'r, (57)
and
r=n(x-wt), (58)

where A, A,, A, n and V are constant coefficients.

Here A, A, and A, are the solitons amplitude, 77 is
the inverse width of the solitons and V is the solitons
velocity. The exponents P, K and r are unknown at

this point and will be determined later. From the ansatz
(55)-(58) we obtains:

U, = P°7°Asech’r — p(p+1)n’ A sech”*%z, (59)

L« = P'n*V2Asech’r — p(p+Dvn*Asech®?r, (60)

u’ = A’sech®r, (61)

u;u, = A A sech™*Pr, (62)

vu, = AA;sech™'z, (63)

U, =k?77°Asech*r —k(k + 1)7 A sech**%, (64)

Uy, =K?77°V2 A, sechs —k(k +1)v?7;7° A, sech "z, (65)
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u; = A’sech™z, (66)
u’u, = A’A sech®P*r, (67)
vu, = A, Asech"'r, (68)
v, =—Arrnsech'z tanh, (69)
v, = Airvisech'z tanh 7, (70)

u,u,, = A>pviysech®Prtanh z, (71)
u,u,, = AzzkvnsechZKz' tanh . (72)
Substituting (59)-(72) into (52)-(54) yields

pzﬂzA_LseCh Pr—p(p +1)772ALsech P2p
—p’n*v?Asech®s + p(p+1Dv’n* A sech”*r
—Asech’r +2A’sech®r + 2A Al sech®™ P (73)
+2AAjsech” 'z =0,

k?n7° A, sech*r —k(k +D)n* A, sech**r

—k?n*v? A, sech*r + k(K +1)v?;° A, sech***r

—A, sech*r + 2A? A sech® ™z + 2 A sech®™r  (74)
+2A,A;sech''t =0,

and

—Asrnsech'ztanh 7 — Ajrvipsech'z tanh «
—4A12 pvrsech®Pr tanh 7 — 4A22kV775ech2kT tanhz (75)
=0.

Equating the exponents of sech®’r and sech”*?r
terms in equation (73), one obtains

3p=p+2, (76)
so that
p=1. (77)

From Eqg. (74) equating the exponents of sech®z

and sech**’r,

3k=k+2, (78)
we get

k=1. (79)

Also, equating the exponents of sech'ztanhrz ,

sech?Prtanh 7 and sech®ztanhz term in Eq. (75)
gives rise to

with Egs. (77) and (79) that leads to

r=2. (81)

Setting the coefficients of sechPz zero in Eq. (73),
we have

P’ A-p VA=A =0, (82)
and using Eq. (77) that gives:

n’ -1
n

<
I
I+

,n#0. (83)

Again from Eq. (74), setting the coefficients of

sech**’r, sech®”™r, sech®r and sech
Zero one obtains:

k+22. k+r

7 terms

—k(k+D7° A, +k(K+DV°n° A, + 2 A, + 27+ 2A,A, =0,
(84)

A1=J_r4/1—A§—A3, (85)

by using Eqgs. (86) and (90).
Finally, varying the coefficients of sech'rtanh 7,
sech®”rtanhz and sech®rtanhz inEq. (82) gives

—Arn—Arvn—4A pvp—4Akv =0, (86)

the latter gives

this leads to

2 —
A =%ﬁ"_l_ln (87)

by using Egs. (77), (79), (81), (83) and (85).
The bright optical soliton solution for the two-Coupled
nonlinear Klein-Gordon equations (52)-(54) is

u, (x,t) = Asechr, (88)

u,(x,t) = A,sechr, (89)
and
v(x,t) = Ajsech’s, (90)
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where the velocity of the solitons V is given by (83) and vV = rAan{tanh"l 7 —tanh™ r} (105)
the soliton amplitudes A and A, are given by (85) and "
87).
@7 v, = rvAgy{tanh”%—tanh“1 z’}, (106)
3.2 Dark optical soliton solution uu, = vafn{tanh“” 7 —tanh?P? r} (107)
t s
In order the start off with the solution hypothesis, the
following ansatz is assumed u,U,, = kvAZy {tanh 2k+1 . tanh2kt T} . (108)
— P
U (x.t) = Atanh"z, (91) Substituting (95)-(108) into (52)-(54) respectively
yields
u,(x,t) = A tanh* z, (92)
pA7R’ {(p—l)tanh"‘2 r—2ptanh® z +(p+1) tanh”*? r}
v(x,t) = A tanh' 7, (93)
and
—pv’ An*{(p-1tanh®?z—2ptanh® r +(p+1)tanh"? z}
r=n(x—-w). (94) (109)
Here in (91)-(94); A, A,, A, and 77 are the free  —A tanh® 7+ 2A7 tanh® 7+ 2A AZ tanh™*P 7+ 2A A tanh”" 7
parameters of the solitons and V is the velocity of the
soliton. The exponents p , K and r are unknown. =0,

These will be determined. From (91)-(94), we obtain
kA7* {(k—1) tanh*"* 7 — 2k tanh* 7 + (k +1) tanh*** 7}
Uy = PA7Z* {(p—D) tanhP? 7 —2ptanh® 7+ (p+1) tanh** |,

(99) —kv?An*{(k —1)tanh*"? 7 — 2k tanh* 7 + (k +1) tanh*** 7 }
(110)
U, = pv’An*{(p-1tanh®?r—2ptanh® r+(p+)tanh*? ¢}, —A, tanh* 7+ 2A2A, tanh?P** 7 + 2% tanh™ 7 + 2A A, tanh*"
(96)
3 3 3p =0,
u; = A tanh*" 7, (CLO R
rAn {tanh"l r—tanh™ r} —1vAp {tanh "™z —tanh"* r}
2 2 2k+
usu, = tanh™ P r, 98
2t = AR ®8) 4 vafn{tanhz’”lr—tanhz’"1 r} (111)
vu, = AA tanh®™" , (99)  —4kvA’p{tanh®* 7 —tanh®* 7} =0.

From Eq. (109), equating the exponents of tanh®” z

Uy, = kA7” {(k =1 tanh* 7 — 2k tanh* 7 + (k +1) tanh** 7}, and tanh™2 7 we have
(100)
3p=p+2, (112)
2 A 2 k-2 k k+2 so that
u,, =kv-An“{(k-1tanh*“ -2k tanh* 7 + (k +1) tanh*“*“ 7 }, _1 113
(101) p== (113)
ul = Al tanh* z, (102) From Eg. (110), equating the exponents of tanh® 7
and tanh“*? 7 we get
2 2 2p+k
usu, = tanh“P™ 7, (103)
i, = AR 3k =k +2, (114)
t
U, = nh"" 104y Ve
u, = A,Ajtanh™" 7, (104) k=1. (115)

Also from Eq. (111), equating the exponents of
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tanh?*! tanh?*! and tanh"™ = we have

2p+1=2k+1=r+1, (116)

which leads to

r=2, (117)

by using Egs. (113) and (115).

Now from Eq. (109), setting the coefficients of
tanh® z terms zero, one obtains

—2p*An’ +2p* VAR’ —A =0,  (118)

that gives

1

S
7 J2v? =2

(119)

by using Eqg. (113).

From Eqg. (119), it is possible to see that the solitons
exist provided

ve R—[-11]. (120)
Then, from Eg. (110), setting the coefficients of

tanh®* 7 , tanh*?7 , tanh®***7 and tanh*"' ¢
terms zero, we have

k(k +) A7 —K(K+VAnR* +2A’A, +2A +2AA, =0,
(121)
so that (with k =1)

(122)

1
A=3- A=A,
by using Eqg. (119).

From Eq. (111), variying the coefficients of the linearly
independent functions tanh?**'z and tanh"™'z or
tanh®* 7 and tanh™'z (with p=1, k=1 and
r=2),where j=-11 we have

—2An—2VA —AVAI —4vAln =0,  (123)
V+1+2A%(v-1)

= 124

A \/ 2oy ) (124)

and so the solitons exist provided
L-V)(v+1+2A2(v—1))>0.

Substituting Eq. (124) into Eq. (122) we obtain

1 v+1+2A7(v-D)
2 2v—-2

Al... vzl (125)

A

Finally, the dark optical soliton solution for
two-coupled nonlinear Klein-Gordon equations (55)-(58) is

u (x,t) = A tanh, (126)
u,(x,t) = A tanhr, (127)

and
V(x,t) = A tanh® r, (128)

where the free parameters A, A, and 7 are given in
Egs. (124), (122) or (125) and (119). We see that the free
parameters A, A, and 77 are depend on the velocity of

the soliton V and the other free parameter A, .

Remark 2: Comparing our results with results in
[29,38], we see that the results are new.

4. Three-coupled nonlinear Klein-Gordon
equations

The three-coupled Klein—Gordon equations are in the
following general form:

Uy — Uy — Uy +2(Uf +U3 +U3 +v)u, =0, (129)

XX

U,

XX

—U,, —U, +2(ul2 +US +U? +v)u2 =0, (130)
Usy, —Ugy — Uy +2(Uf + U3 +UZ +V)uy =0, (131)

V, —V, —4({UU;, +U,U,, +UgUy ) =0. (132)
4.1 Bright optical soliton solution

Let us begin the analysis by assuming an ansatz
solution of the form

u,(x,t) = Asech®r, (133)

u,(x,t) = A sechr, (134)
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Uy (X,t) = Aysech'z, (135)
V(X,t) = A, sech’r, (136)

and
r=n(x-w), (137)

where A, A, A, A, n and V are constant
coefficients. Here A, A,, A, and A, are the soliton
amplitudes, 77 is the inverse width of the solitons and V

is the solitons velocity The exponents p, K, r and S

are unknown at this point and will be determined later.
From the ansatz (133)-(137) we obtain

U, = P°n°Asech’r — p(p+1)n°Asech” "%, (138)

Uy = p*n°V? A sech’r — p(p+1)Vv?n*Asech”?r,  (139)
u; = A’sech®r, (140)

u;u, = AA sech™Pr,  (141)

u32u1 = A1A32 sech®*’r, (142)

vu, = A A, sech”r, (143)

Uy, = k2772AZ sech*r — k(k +1)772A2 SEChk+ZT> (144)

Uy = k2772V2A2 sech*r —k(k —|—1)V2772AZ sech**%r, (145)
u; = Asech™z, (146)

usu, = A'Aysech”™ ™z, (147)

u32u2 = A32A2 sech?*z, (148)

vu, = A A, sech**°r, (149)

Ugy = r2772A2 sech'z—r(r +1)772A2 sech™?r, (150)
Uy, = r’n°V2 A sech’s —r(r +)v?n®A,sech ™2, (151)
u; = Ajsech’7, (152)

uu; = A’Ajsech™"'z, (153)

u22u3 = AzzAssechZK”T, (154)

vu, = A A, sech""°r, (155)

v, =—A,Snsech’r tanhz, (156)

v, = A,svrpsech’r tanh z, (157)
uu, = A’pvyysech®r tanh z, (158)
u,U,, = A’kvisech®zr tanh z, (159)
UUy = ASrvpsech®z tanh 7, (160)

Substituting (138)-(160) into (129)-(132), respectively
yields

pzﬂzA_LseCh Pr—p(p +l)772A_Lsech P2p

—p?n*v? Asech’ + p(p +1)Vv’;7° A sech”
—Asech’r +2A’sech®z + 2A Ay sech®™*Pr  (161)
+2A7 A sech® ™z +2A A sech”*r =0,

k’n®A,sech'z —k(kK +1)” A sech**’r

—k2772V2 A sech*z +k(k +:|.)V2772A2 sech**%r

—A, sech*t + 2A° A, sech®” ™7 + 2A sech™r  (162)
+2A2A, sech®*r +2A, A, sech*r =0,

r’n®A,sech's —r(r +0)n°A,sechr

—r’n*V? A sech's +r(r +)v?n*A,sech ™
—Asech't +2A? Ajsech® 't + 2A7 Ajsech™ 't (163)

+2AJsech®r +2A,A, sech™r =0,

and

—A,snsech’r tanh 7 — A,svisech’r tanh =
—4A2 pvrsech?’r tanh 7 — 4A22kV775ech2"z' tanhz (164)
—4A32rV773ech2rT tanhz =0.

Similarly, equating the exponents of sech®r and

sech?™r terms in Eq. (161), one obtains
3p=p+2, (165)
so that

p=1. (166)
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From Eq. (162) equating the exponents of sech3k2'

and sech“*r

3k=k+2, (167)

we get

k=1. (168)

Also, from Eq. (163), equating the exponents of

sech®7 and sech™?r

r=r+2, (169)
we get

r=1. (170)

Then equating the exponents of sech’ztanhz ,

sech®”rtanhz, sech®rtanhz and sech®7tanht
term in Eq. (164) gives

2p=2k=2r=s, (171)

and by using Egs. (166) and (168) it leads to
s=2. (172)

Setting the coefficients of sechPr zero in Eq. (161),
we have

P’ A-pV'A-A=0,  (173)
and by using Eq. (166) that gives
2
-1
v=+ d ,n#0. (174)
n

On the otherhand, from Eq. (164) setting the

coefficients of sech’ztanhz , sech?’rtanhz |,

sech®rtanhz and sech®ztanhz terms zero we
obtain

—A,sn— Asvp — 4N pvy — 4 A2 kv —4A2rvn =0, (175)

the latter gives by using Eq. (174):

&;_zW—QM+&+&)
n+n° -1

Setting the coefficients of sech®r , sech®'7 ,

(176)

sech®*Pr, sech™? and sech?**r inEq. (161) zero
gives rise to

—p(p+D7* A+ p(p+LV?n* A +2A +2A A +2ATA +2AA, =0,
177)

and this leads to

R R e

't -1-n
(178)

by using Egs. (166), (168), (170), (172), (174) and (176).

Finally, the bright optical soliton solution for the

three-coupled  nonlinear ~ Klein-Gordon  equations
(133)-(137) is as follows;
u, (x,t) = Asechr, (179)
u,(x,t) = Asechr, (180)
U, (x,t) = A;sechr, (181)
and
V(x,t) = A ;sech’, (182)

where the velocity of the solitons V is given by (174) and
the soliton amplitudes A, and A, are givenby (176) and
(178).

4.2 Dark optical soliton solution

In this section, we concern with 1-soliton to the
three-coupled nonlinear Klein-Gordon equations by the
wave ansatz method. The starting hypothesis or ansatz is as
follows;

u,(x,t) = A tanh’ z, (183)
u,(x,t) = A tanh* , (184)
U, (x,t) = Ajtanh" 7, (185)
v(x,t) = A, tanh® 7, (186)
and
r=n(x—vt), (187)

where A, A,, A, A, and 77 are the free parameters
of the solitons and V is the velocity of the soliton. The
exponents P, K, r and S are unknown. These will be
determined later. From (183) - (187) we obtain
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U, = PA7R° {(p—l) tanh®? r —2ptanh® 7+ (p+1) tanh"*? r},

(188)
U, = PV?AR*{(p-Ytanh®?z—2ptanh® r+(p+Ltanh®? 7z},
(189)
u’ = A’tanh®? z, (190)
uiu, = A AZ tanh™*° , (191)
2 _ 2 2r+p
usu, = A A tanh“""° 7, (192)
vu, = A A, tanhP** 7, (193)

Uy, = kAT {(k —1)tanh*2 7 — 2k tanh* 7 + (k +1) tanh**? z'},
(194)

Uy, = kv’ An°{(k—1)tanh*? 7 — 2k tanh* 7 + (k +1) tanh**? 7 },

(195)

ul = Al tanh® z, (196)
u’u, = A’A, tanh*** ¢, (197)
ulu, = A’A, tanh®** 7, (198)
vu, = A A, tanh*** z, (199)

u,, = rAn? {(r —1)tanh"? 7 —2r tanh" 7 +(r +1) tanh"™ r},
(200)

Uy, = VAR {(r—Dtanh™? z—2rtanh" z +(r +L) tanh** z },

(201)

us = Atanh* z, (202)

u’u, = A’A, tanh*"*" 7, (203)
uiu, = AZA, tanh™*" ¢, (204)

vu, = A /A, tanh"™ 7, (205)

v, = sAgy{tanhS*l 7 —tanh** ’Z'}, (206)

v, = VAR {tanhs+1 r—tanh*? 2'}, (207)

Uy, = pvA’y {tanh?** 7 —tanh** 7}, (208)
U, = kvASy {tanh® 7 —tanh®™* 7}, (209)
Uslly, = VAT {tanh®™ 7 —tanh®* 7} (210)

Substituting (188)-(210) into (129)-(132) respectively
yields
pA7’ {(p —1)tanh®? 7 —2ptanh® 7 +(p+1) tanh " z’}

—pv: AR {(p-Dtanh"?r—2ptanh® r +(p+1)tanh? r }

—A tanh® 7+ 2A° tanh®® 7+ 2 A A2 tanh®*P 7 + 2A A tanh® P 7 + 2A A, tanh*** ¢
=0,
(211)

kA7* {(k -1 tanh*?* 7 — 2k tanh* 7 + (k +1) tanh*** 7}

—kv?An*{ (k —1) tanh*? z — 2k tanh* 7 + (k +1) tanh*** 7 }
—A tanh* £+ 2A?A, tanh®™* 7 + 2 A3 tanh™ 7 + 2AZA, tanh®** 7+ 2A A, tanh*** ¢

=0,

(212)

rAn*{(r-1)tanh’z— @ tank w( 1) tdnk
-’ AR {(r-)tanh™?z—2rtanh" 7 +(r +1)tanh"? z }
—A tanh" 7+ 2A7A tanh®™" 7+ 2A% tanh® 7+ 2AZA tanh®™* 7+ 2A A, tanh™° 7
=0,
(213)
sAy {tanh** 7 —tanh**'z} —svAp {tanh** 'z —tanh*" ¥}
~4pvA’n {tanh?* 7 —tanh*" 7}
—~4kvAin {tanh*** 7 —tanh*~* 7}
—4rvAin{tanh** z —tanh**r} =0.

(214)

From Eq. (211) equating the exponents of tanh®’ z

and tanh®* z we have
3p=p+2, (215)
so that
p=1. (216)

Also, from Eqg. (212) equating the exponents of

tanh®* 7 and tanh*? z we have
3k=k+2, (217)
we get

k=1. (218)
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On the otherhand, from Eq. (213), equating the
exponents of tanh® 7 and tanh"™?7 we have

r=r+2, (219)
we get

r=1. (220)

Then from Eq. (214) equating the exponents of

tanh?**", tanh?***, tanh®**and tanh®" ¢ gives rise
to

2p+1=2k+1=2r+1=s+1 (221)
and by using Egs. (216), (218) and (220) we get
s=2. (222)

Now from Eq. (213), setting the coefficients of
tanh® 7 terms zero one obtains:

—2p* A’ +2pVPAR - A, =0,  (223)
and by using Eq. (216), we get
At +2
v=tt——— =0 (224)

2n

After that, in Eq. (211), setting the coefficients of
tanh®" 7, tanh??7, tanh®**? 7, tanh® "z and
tanh®*" z terms zero one obtains

P(P+DAR — p(p+IV* AR +2A1+2AN +2AA +2AA, =0,
(225)
so that (with p =1) and using Eq. (224)

A _ 24K 4N —4A,
£ > .

(226)

Again from Eq. (214), setting the coefficients of the
linearly independent functions tanh?**’ 7  and
tanh* 7 or tanh®*’ 7 and tanh**’z tanh®*) ¢
and tanh** 7 (with p=1, k=1, r=1and S=2)
zero, j=-L11 we have

—2An—2vAn - 4VA277 — 4VA2277 — 4VA3277 =0, (227)

and

«/4772 +2

A = ) (228)
—21++/4n* +2

Finally, the dark optical soliton solution for
three-coupled  nonlinear  Klein-Gordon  equations

(183)-(187) is of the form
u (x,t) = A tanhr, (229)
u,(x,t) = A tanh, (230)
U,(x,t) = A tanh 7, (231)

and

V(x,t) = A, tanh® 7, (232)

where the free parameters A and A, are given by (226)
and (228). The velocity of the soliton V is given by (224).

Remark 3: Comparing our results with results in
[29,38], we see that our results are new.

Remark 4: It has been shown that the one- and
two-coupled nonlinear Klein—Gordon equations are
completely integrable and their integrability properties can
also be constructed by using P-analysis [41].

5. Conclusion

In this work, we have investigated the bright and dark
optical soliton solutions of three variants of the coupled
Klein-Gordon equations by using the solitary wave ansatz
method. We showed that all the physical parameters of the
obtained solutions are depend on the others. We also proved
that the exponents in the bright solitary wave solution are
similar to those given in the dark solitary wave solution.
Some of the results are in agreement with the results
reported by others in the literature, and new results are
formally developed in this work. In addition to, with the aid
of Maple, it is confirmed that the solutions are correct since
these solutions satisfy the original equation.

The method that is used is far less involved than the
standard techniques that are used to study these kind of
problems. Additionally, we see that the used method is an
efficient method of integrability for constructing exact
soliton solutions for such versions of the coupled nonlinear
KG-type equations.
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